On a relative Alexandrov-Fenchel inequality for convex bodies in Euclidean spaces

نویسندگان

  • Fausto Ferrari
  • Bruno Franchi
  • Guozhen Lu
چکیده

In this note we prove a localized form of Alexandrov-Fenchel inequality for convex bodies, i.e. we prove a class of isoperimetric inequalities in a ball involving Federer curvature measures. 1991 Mathematics Subject Classification: 52A20, 52A39, 52A40, 49Q15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mixed $f$-divergence for multiple pairs of measures

In this paper, the concept of the classical f -divergence (for a pair of measures) is extended to the mixed f divergence (for multiple pairs of measures). The mixed f -divergence provides a way to measure the difference between multiple pairs of (probability) measures. Properties for the mixed f -divergence are established, such as permutation invariance and symmetry in distributions. An Alexan...

متن کامل

Inequalities for mixed p - affine surface area ∗

We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...

متن کامل

On mixed f - divergence for multiple pairs of measures ∗

In this paper, we extend the concept of classical f -divergence (for a pair of measures) to mixed f -divergence (for multiple pairs of measures). Mixed f -divergence provides a way to measure the difference between multiple pairs of probability distributions. Properties for mixed f -divergence are established, such as permutation invariance and symmetry in distributions. We also provide an Alex...

متن کامل

Harmonic Analysis in Convex Geometry

(in alphabetic order by speaker surname) Speaker: Judit Abardia (Frankfurt University) Title: Projection bodies in complex vector spaces Abstract: The projection body of a convex body in the Euclidean space was characterized by Monika Ludwig as the unique Minkowski valuation which is continuous, translation invariant and contravariant under the (real) special linear group. In a joint work with ...

متن کامل

The Aleksandrov-Fenchel type inequalities for volume differences

In this paper we establish the Aleksandrov-Fenchel type inequality for volume differences function of convex bodies and the Aleksandrov-Fenchel inequality for Quermassintegral differences of mixed projection bodies, respectively. As applications, we give positive solutions of two open problems. M.S.C. 2000: 52A40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006